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Abstract

Access to basic infrastructure is a critical component of quality of life and an important measure
of economic development. However, on-the-ground data about infrastructure access, especially
in low-income countries, is often sparse and costly to collect. We leverage satellite imagery and
survey data to train a machine learning model that predict access to infrastructure for each
6.72x6.72km area of Africa. The model achieves accuracy levels of 77.1% to 84.7%.

We show the value of this novel dataset with two applications. First, we use a spatial
regression discontinuity design to study how much of the heterogeneity in infrastructure access
across countries comes from differences in institutional quality, finding a positive effect of a
modest magnitude, reconciling previous contradicting results in this literature. Second, we
study the role of political favoritism in explaining within country heterogeneity, finding that
areas with political ties to current or former presidents have better access to infrastructure.
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1 Introduction

Access to basic infrastructure such as piped water, sewerage, and electricity, is a critical

component of quality of life. It contributes to improving health, preventing illness and

reducing child mortality (Galiani et al., 2005; Alsan and Goldin, 2019; Irwin et al., 2020). It

also helps save time spent on home production, freeing up time for employment (Dinkelman,

2011), school work (Ashraf et al., 2021) or leisure (Devoto et al., 2012). Yet, granular,

up-to-date data on access to basic infrastructure is lacking in many low-income countries.

Country-level estimates are based on representative household surveys, but those tend to be

too sparse to conduct meaningful spatial analyses of how infrastructure access is distributed

within a country. This dearth of localized data limits what we know about inequality in

access and its determinants.

This paper generates novel data on infrastructure access for every single 6.72km × 6.72km area

of Africa, and uses that data to document some key facts about the role of institutions in the

levels and distribution of infrastructure access. We combine information from communities in

household surveys and satellite imagery to train a machine learning model following Oshri et

al. (2018) to predict infrastructure access (access to piped water, sewerage and electricity). We

do so with relatively high precision, achieving accuracy levels of 77.1% to 84.7%. Specifically,

68.4% of patches with sewerage according to ground survey data are predicted to have sewerage,

and 90.9% of those without sewerage are predicted not to have sewerage. The figures are 78.6%

and 75.6% for piped water and 82.2% and 84.3% for electricity, respectively.

This novel data allows us to revisit some old debates in the political science and economics

literature. We first look at the role of national institutions on local development levels. Taking

advantage of the fact that national borders that divide African countries are largely the result

of boundary-drawing practices from the colonial era and arbitrarily dividing pre-colonial ethnic

homelands into different countries (McCauley and Posner, 2015), we employ a spatial regression

discontinuity design to study the effect of national institutions on infrastructure development.

Results suggest that national institutions over the past 20 years have played some role: crossing

from a country with lower institutional quality to a country with higher institutional quality

significantly increases the likelihood of access to basic infrastructure. Second, we examine the
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allocation of resources within a country. We find a strong positive correlation between political

ties and infrastructure access across all infrastructure measures considered: the birthplaces of

African presidents have better infrastructure access, though higher institutional quality reduces

such political favoritism.

To generate reliable predictions of infrastructure access for Africa, we train a Residual Network

(ResNet). This type of Convolutional Neural Network (CNN) architecture has been shown to

have good performance for binary classification problems (He et al., 2016). Our ResNet takes

six bands from daytime Landsat imagery and 1 band from the VIIRS Nighttime data as input

and generates a prediction, then makes a binary classification based on the prediction, while

minimizing the loss function between predictions and ground truths. Additionally, we apply

a calibration technique, Temperature Scaling, so that the scores predicted by the model for a

given patch of land can be correctly interpreted as the probability that the patch of land has

access to the infrastructure (Guo et al., 2017).

We train three models, for the following three types of infrastructure: electricity, sewerage and

piped water. Because the models use both daytime and night-time imagery, they outperform

predictions based on night lights (NL) alone, in particular for areas far from the capital city,

where many areas are completely unlit at night, yet they exhibit important heterogeneity in

infrastructure access.

Having generated good granular data on access to infrastructure, we use it to revisit the

literature on the determinants of local development. To study the impact of national

institutions on economic development, we exploit the arbitrary drawing of national borders

during the colonial period for African countries. To do this, we intersect the “Tribal Map” of

Murdock (1959) and a map of modern national borders in Africa (GADM, 2018) to identify

ethnic groups that were partitioned by national borders, and modern countries that contain

adjacent ethnic groups. Then, we use a spatial regression discontinuity design to study the

effect of national institutions across borders on access to infrastructure. We find that crossing

from a country with lower institutional quality to a country with higher institution

quality—corresponding to a 0.77 standard deviation gain in institutional quality on

average—increases the likelihood of a patch being lit in nighttime lights (NL) by 3.54

percentage points; and the likelihood of having access to electricity, sewerage and piped water
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increases by 1.72, 1.12 and 1 percentage points, respectively. Patches in countries with higher

institutional quality also have a paved road 4.73 kilometers closer on average.

We also use our dataset to study the extent to which the allocation of infrastructure across

geographical units within a country is consistent with ethnic favoritism. We compute average

infrastructure access at the administrative level-2 (typically, the district), and collect

information on the birthplace and ethnicity of presidents since independence (or 1960 for

countries that were never colonized). Our findings show a strong positive correlation between

political ties and infrastructure access across all infrastructure measures considered. The

correlation is especially strong for geographical units within the median distance to the

capital. By interacting the institutional quality index with the political tie measure, we find

that having better institutional quality mitigates the uneven allocation of resources. Lastly, as

African countries have been receiving foreign aid in the past decades, we investigate whether

there are different patterns of political favoritism in high- vs. low-aid countries. Results

demonstrate that the correlation between political ties and uneven allocation is stronger in

countries that receive high-aid. Our paper makes two main contributions. First, we present a

new method to generate accurate, hyper-localized data from satellite imagery when granular

on-the-ground data is lacking. Such localized data is particularly powerful in investigating

spatial heterogeneity. Our proposed methodology can be used to generate similar data for

other continents, or other time periods, provided satellite imagery is available and there is at

least some ground truth data to train the model.1 We build on the seminal contributions of

Chen and Nordhaus (2011) and Henderson et al. (2012), which introduced night time

luminosity measured via satellite as a meaningful proxy for economic development, and the

subsequent advances showing how night time luminosity can be combined with on-the-ground

surveys to train deep learning models to predict income levels (Jean et al., 2016; Oshri et al.,

2018; Ratledge et al., 2022; Xie et al., 2016; Yeh et al., 2020).

Our second contribution is to the debate on the role of institutions in economics development.

Prior evidence on this has been mixed: while Acemoglu et al. (2001) estimated a very strong

role of institutional quality at the country level using an instrumental variable design,

Michalopoulos and Papaioannou (2014), using a spatial regression discontinuity, failed to

1Our method uses public imagery, which further lowers the barrier in applying our method in other settings.
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detect an effect of national institutions on local African development after controlling for

ethnicity fixed effects. Our novel dataset helps to reconcile these two sets of results.

Replicating the analysis of Michalopoulos and Papaioannou (2014) using our novel dataset,

we find that national institutions do play a role, but the magnitude of their impact is much

more modest than that estimated in Acemoglu et al. (2001), confirming the conjecture of

Pande and Udry (2005) that the identification strategy in Acemoglu et al. (2001) may have

generated an upward bias.

The granular dataset also allows us to revisit the literature on the role of ethnicity in distributive

allocations (Bates, 1974). Expanding on the studies of Burgess et al. (2015) on the placement

of roads and that of Dreher et al. (2019) on where foreign assistance is spent, we confirm that

political favoritism exists across many domains and show that, while it is somewhat exacerbated

by foreign assistance, it can be mitigated through higher quality national institutions.

The remainder of the paper proceeds as follows. Section 2 introduces the machine learning

model and describes how it is trained and validated, before presenting its predictions for

infrastructure access for the African continent, and how we combine these predictions with

other outcomes and geographical controls to build the final dataset. Our two political

economy applications are presented in Sections 3 and 4. Section 5 concludes.

2 Generating Granular Infrastructure Access Data

Our aim is to generate localized measures of infrastructure access. We do so at the “patch”

level. By patch we mean a square geographic area of 6.72 × 6.72 kilometers. We impose a grid

onto the African continent, dividing it into 747,165 patches.

The only measures we are aware of that exist for the entire grid of patches are night lights

(from satellite imagery) and population density estimates created through satellite imagery

and remote sensing. Our aim is to add measures of infrastructure access, specifically, access to

the electricity grid, piped water and the sewerage.

To generate patch-level estimates of infrastructure access, we combine both daylight and

nightlights satellite imagery with deep learning techniques, which have been successfully used
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in a wide array of satellite imagery applications.2

This section first describes the inputs used to train the model (satellite imagery and ground

truth source), the architecture of the model used, how we trained the model and calibrated its

predictions after training, and finally the validation exercises using external survey data.

2.1 Ground-Truth: Afrobarometer Surveys & the Sahel Desert

We use the Afrobarometer Round 6 survey to identify communities with data on

infrastructure access. Afrobarometer is an Africa-wide effort to collect household-level data

every 4-5 years. Round 6, which we focus on for training, was collected between 2014 and

2015, and contains information from 36 African countries. Data on infrastructure access is

recorded by the enumerator at the Enumeration Area (EA) level, which contains on average 8

households. The dataset we use contains 7,022 enumeration areas, with 150 to 300 EAs per

country. We exploit the fact that the Afrobarometer data was geocoded by BenYishay et al.

(2017) to match each EA to the corresponding satellite images.3 We match the centroid of the

EA to the centroid of the satellite image.

As Afrobarometer surveys, by construction, only collect data from populated areas, we do

not have ground truth for locations where no one lives. To map infrastructure over the entire

continent, we however need the model to learn to recognize areas where there are no households.

Indeed, if the model did not learn that some places are not suitable to live and therefore, no

infrastructure is built there, the risk of false positives could be high. To avoid this problem, we

add to the training dataset 696 uninhabited patches from the Sahara Desert with “zero” labels

for all infrastructure measures.

Figure 1 displays the location of all enumeration areas in our training dataset. We can observe

that some countries have great coverage, while others have very little or no coverage at all.

This highlights the need to use alternative data sources, namely satellite imagery combined

with machine learning techniques, rather than to do simple extrapolations from the sparse

2See for example Albert et al. (2017); Bragilevsky and Bajić (2017); Jean et al. (2016); Oshri et al. (2018);
Saavedra and Romero (2021); Xie et al. (2016); Yeh et al. (2020)

3The survey was geocoded ex-post, so some EAs do not have accurate coordinates. In particular, 3,053
EAs share geocoordinates with another EA. We drop these enumeration areas to focus on those for which the
geolocation is accurate (N=3,969 EAs)
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Figure 1: Location of Afrobarometer EAs in Africa
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ground truth data.

2.2 Satellite Imagery

We use multispectral imagery from the Landsat 7 and 8 Surface Reflectance Tier 1 Collection

and from the VIIRS Stray Light Corrected Nighttime Day/Night Band Composites Version 1.

Landstat images are available at a 30 meter resolution, and we use 6 of its bands: 3 RGB bands

and 3 infrared bands. We use the quality assessment band to remove pixels that are marked

as having cloud, cloud shadow and snow in every image, and then take a median composite of

every cloud-free pixel available between 2014 and 2015 for 6.72km by 6.72km patches around

the centroid of the ground-truth data points (Afrobarometer enumeration areas and desert

patches) described in section 2.1.

The VIIRS Nighttime Light (NTL) imagery has resolution of 15 arc seconds, approximately

500 meters per pixel, and it only contains a single band recording the radiance at night. The

data product for NTL data throughout this paper has been preprocessed to filter out clouds

and correct for stray light. We generate 2014-2015 median composites based on monthly data

(because of the possible lack of good quality data coverage for some months). The nightlight
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band is then reprojected and concatenated to the landsat images as the seventh band.4 When

we are training the model, the input imagery has size 224 pixels by 224 pixels (6.72km by

6.72km) and 7 bands, a dimension of 224× 224× 7.

In order to illustrate how our imagery generally looks, subpanel (a) of Figure 2 displays one

example of a Landsat 8 image taken from Kenya, where we only visualize the 3 RGB bands.

Subpanel (b) displays an image of the same geography using VIIRS Nighttime Light

imagery.

Figure 2: Satellite imagery examples

(a) LANDSAT 8 image from Kenya (b) VIIRS image from Kenya

2.3 Machine Learning Model

We build on the approach we previously developed in Oshri et al. (2018). The first task

consists of solving a multi-label binary classification problem: Using satellite images as inputs,

we want to predict whether EAs have access to infrastructure or not. We train a Residual

Network (ResNet), a state-of-art CNN that has been shown to have good performance for

binary classification problems (He et al., 2016). The ResNet takes six bands for the Landsat

data and 1 band for the VIIRS Nighttime data as input and generates a score, and makes a

binary classification based on the score, while minimizing the loss function between predictions

and ground truths. More technical details on the structure of the Residual Network, the weights

4VIIRS Nightlight Light data has different resolution from Landsat so we re-projected it to 30-meters.

7



initialization procedures, data processing, regularization and optimization are in Appendix

C.1.

CNNs tend to overfit and generate scores very close to 0 or 1 for each observation so that they can

get a small loss function. To avoid this problem, we use a post-estimation calibration technique

called “temperature scaling”, which ensures that the score represents the “confidence”, i.e, the

likelihood that a given area has access to specific amenities Guo et al. (2017).5.

2.3.1 Model Performance

Out of 4,665 observations, we use 80% to train our model and 20% to test its performance,

which means that we use 3,738 observations to train our model, and 927 observations to assess

the performance of our final model.

Table 1 reports on the performance of the model. For each infrastructure considered, we classify

a patch as 0 (no access) if its predicted probability is below 0.5, and as 1 (access) if the predicted

probability is above 0.5. In the first column of Table 1, we report the mean of the ground truth

outcomes in our test set: Around 55% of patches have access to electricity, 52% to piped water,

and 28% to sewerage. The second column of Table 1 displays the accuracy of the model over

the test set, where we calculate the number of correct predictions divided by the sample size.

We can see that the model predictions are correct between 77% and 84% of the time, depending

on the infastructure considered.

Next, we report recall—the number of correct positive predictions (when we predict there is

access to infrastructure) divided by the number of actual positive observations, and specificity—

the number of correct negative predictions (when we predict there is no access to infrastructure)

divided by the number of actual negative observations. Recall ranges between 68% and 82%,

and specificity is between 74% and 91%, which shows that the model performs well at predicting

both instances of access and lack of access to infrastructure.6. Finally, we report AUCROC

scores, which represent the area under the ROC curve. These scores show how well a classifier

5See Appendix C.2 for more details
6Breaking down the performance of by ground truth class (0 or 1) is important because of the class imbalance

in some outcomes like sewerage. For instance, we could predict that no household has access to sewerage, and
the accuracy of that prediction would be 72.4%. By looking at recall and specificity we can see that the high
accuracy levels come from good predictions for both classes, and it is not being affected by class imbalances.
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can distinguish between 2 classes, i.e., predicting 0 when the ground truth is 0 and predicting

1 when the ground truth is 1. This metric takes values ranging between 0 and 1, with 1

representing a perfect classifier. The area under the ROC curve ranges between 77% and 83%

depending on the infrastructure considered.

Appendix Table B.1 further analyses the performance of the models separately for patches in

rural vs. urban areas. Urban enumeration areas are more likely to have access to electricity,

piped water, and sewerage than rural enumeration areas. It is therefore important to make sure

the model performance is not simply driven by the model’s ability to separate urban from rural

areas. Reassuringly, Table B.1 shows that the model performs well in both rural and urban

areas. As expected, recall is slightly higher in urban areas, and specificity is higher for rural

areas: the model is better at identifying when there is access to infrastructure in urban areas,

and at identifying when rural areas lack access to basic infrastructure.

Our model’s performance is on par with similar models in this literature: Oshri et al. (2018)

’s model presents accuracy levels between 67.3% and 83.2% when predicting our same three

infrastructure outcome, achieving the same accuracy when predicting access to electricity, but

lower accuracy when predicting access to sewerage and piped water.

Table 1: Model Performance for Infrastructure Outcomes

Mean Accuracy Recall Specificity AUCROC
Electricity 0.547 0.832 0.822 0.843 0.833
Piped Water 0.519 0.771 0.786 0.756 0.771
Sewerage 0.276 0.847 0.684 0.909 0.796

Note: All performance metrics were computed in our test sample.

2.3.2 External validation with other datasets

We test whether our predicted measures are valid using the ground truth from new datasets

with precise geolocations. We export satellite images at the corresponding locations with the

same procedures as before, feed the images into our model, and generate predictions. Then,

we compare our predictions with the ground truth data to check whether the model performs

well in other settings. We also compare the performance of our model in these datasets against

a “naive model” using nightlights only. The NL model will predict that an EA has access to
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electricity, piped water, and sewerage if there is any lit patch, and no access to all infrastructure

of the area is completely dark.

Our validation datasets are divided into two categories: datasets from the same time period

and a different period. As the model is built to make predictions from 2014-2015 imagery, it

is possible that it is particularly accurate in predicting infrastructure outcomes in the same

period. We use four contemporaneous datasets at various levels (household, community) to

test for within-period validity. We also test how well the model performs in earlier or later

data. Specifically, for earlier periods, we use Afrobarometer Round 5, collected in 2011-2013,

matched with Landast images from that same period. For later periods, we use the second

round of the Greater Addis Ababa survey collected by Stanford’s AUDRI initiative in 2018,

paired with imagery from 2018. Details on the datasets are in Table B.2.

We present the validation results in Table B.3. We see that proposed model always

significantly outperforms the NL model in predicting piped water and sewerage access. In

term of predicting electricity, our model outperforms almost always, especially in rural

regions. Our model performs overall better than the nighttime lights benchmark when we

validate against the Afrobarometer Round 5. In particular, it does substantially better for

patches in rural areas and near national borders, though it performs worse in urban areas. In

the validation dataset of high schools in Ghana, nighttime lights perform slightly better when

predicting access to electricity, but our model performs considerably better when predicting

access to piped water. In Addis Ababa surveys, the naive nighttime lights model performs

slightly better when predicting electricity only in Addis Ababa, but it performs significantly

worse in piped water and sewerage. In Abidjan and rural Malawi, our model outperforms in

every outcome.

2.4 A new dataset to study African development

After training, calibrating and validating the machine learning model, we can finally use it to

predict infrastructure access levels across all Africa. To do this, we overlay a grid over a map

of Africa, splitting the continent into 747,165 squared patches with a size of 6.72 kilometers by

6.72 kilometers. After producing our grid, we retrieve satellite imagery for every patch in the

grid from the same Landsat 7 and 8 Surface Reflectance and VIIRS Nighttime Light collections
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we used to train our model. We input these images to our calibrated machine learning model

and can then predict, for any given patch, the probabilities that it has access to piped water,

sewage systems and electricity.

We complement our dataset of predicted outcomes with readily available rasters of data

containing information about development related outcomes, re-projecting them to match our

grid size or taking the average of the pixels of these rasters for each patch of our grid.7 In

particular, we use VIIRS Nighttime Light for 2014 and 2015 to generate the average nighttime

luminosity for each patch in the grid; we compute average population density data for the

year 2015 using Data For Good at Meta’s High Resolution Population Density Maps (Tiecke

et al., 2017); and we use the GRIP global roads database to compute the distance to the

closest road for each patch in the grid (Meijer et al., 2018).

We incorporate relevant geographic control variables into the dataset: For each patch of land

we compute the distance to the capital and the distance to the coast using detailed maps of

current national borders in Africa (GADM, 2018). We also compute the distance to the closest

petroleum and diamond sources inside and outside the country, using the PETRODATA v1.2

dataset from the Peace Research Institute Oslo (Lujala et al., 2007) and the DIADATA v1a

dataset from the same institution (Gilmore et al., 2005). We obtained data about Malaria

Suitability (P. Falciparum suitability) for 2010 from (Gething et al., 2011). We retrieved a

measure of land suitability for agriculture from The Atlas of the Biosphere (Ramankutty et

al., 2002). Finally, we incorporate information about the elevation and the distance from

the equator for each patch of land in our dataset, and an indicator variable for landlocked

countries.

Table 2 presents descriptive statistics from the resulting dataset. Patches on the African

continent have on average a 29% probability of having access to electricity. The corresponding

figures for sewerage and piped water are 14% and 29%, respectively. There is substantial

dispersion. In contrast, nighttime lights intensity, expressed as the average radiance of a

patch, is highly skewed: only around 10% of patches have a positive radiance value at

night.

7see Appendix D for more details.
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Table 2: Summary Statistics: Patch-Level Outcomes

Variable Mean Std. Dev Min P25 Median P75 Max Obs

Electricity 0.29 0.26 0.00 0.08 0.18 0.45 1.00 746,475

Sewerage 0.14 0.14 0.01 0.07 0.10 0.16 1.00 746,475

Water 0.29 0.22 0.00 0.11 0.23 0.44 0.99 746,475

Nightlights 0.10 1.61 0.00 0.00 0.00 0.00 427.53 746,605

Distance to the closest road 17.05 35.63 0.00 0.00 3.41 18.56 3,625.39 731,145

Population Density 33.19 278.19 0.00 0.00 0.00 7.35 48,962.05 747,158

To illustrate the value added of our new dataset, Figure 3 zooms in on a specific region (the three

West African countries of Côte d’Ivoire, Ghana and Togo). While the night lights map would

suggest only urban centers have access to electricity, our model predictions reveal substantial

variation across patches within rural areas.

Figure 3: Predictions: Zooming in on Cote d’Ivoire, Ghana and Togo
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This pattern is not specific to the West Africa area shown in Figure 3. Figure 4 plots the

distribution of our predicted infrastructure outcomes against the distribution of nightlights for

12



the subset of patches with non-zero night lights. Even within this selected sub-sample, there

is very little variation in the night lights information, with 80% of patches having extremely

low radiance. In contrast, for this same sub-sample, our electricity and other infrastructure

predictions exhibit rich variation.

Figure 4: Comparison of outcome distributions
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Because it was so far the only available outcome, most of the previous literature on comparative

development has focused on night lights density (Chen and Nordhaus, 2011; Henderson et al.,

2012; Michalopoulos and Papaioannou, 2013, 2014; Moscona et al., 2020; Canning et al., 2022).

While this has enabled the literature to make great strides, we believe that it is now time to

go beyond night time lights. We illustrate this in the next two sections, in which we use our

newly compiled dataset to revisit some old debates in the literature on the determinants of

local development.

3 Application I: Institutions and Development

While there is a robust correlation between institutional quality and growth in cross-country

analyses, disentangling the pathways of influence has proved elusive due to a lack of

exogenous variation in institutional quality. Focusing on African development, Michalopoulos
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and Papaioannou (2014) exploited the arbitrary drawing of borders during the colonial period

to estimate the impact of national institutions on economic development using a regression

discontinuity approach. The only outcome available at the patch level at the time was night

lights density. Their analysis yielded a (surprising) null result: national institutions do not

impact development levels, in sharp contrast with the earlier findings of Acemoglu et al.

(2001). In this section, we revisit this question, bringing to bear the comprehensive and rich

dataset we just described. We find that national institutions do matter for infrastructure

development, though the magnitude of the effect is much more modest than the

“development” effect estimated in Acemoglu et al. (2001).

3.1 Historical Background

The borders that divide African countries are largely the result of boundary-drawing practices

from the colonial era, which mostly ignored the sociological, cultural, and historical aspects of

the peoples they separated (McCauley and Posner, 2015). These colonial political borders

date from the Berlin Conference of 1884-85, during which France, Germany, Great Britain,

Italy, Portugal and Spain partitioned the African continent. These final borders did not

always followed geographical features: 30% of Africa’s boundaries are straight lines according

to Boggs (1940), and 44% follow astronomical lines according to Barbour (1961). McCauley

and Posner (2015) estimates that around 80% of borders follow meridian, parallels or other

rectilinear or curved lines. As Griffiths (1986) notes, European colonizers laid borders with

very odd shapes and varied sizes: They created very long narrow states, like The Gambia and

Togo, where development concentrated in very short sea coasts that are very isolated from the

rest of the country; perhaps most problematic, the drawn borders caused 14 countries to be

landlocked, more than there are in the rest of the world combined. These arbitrary colonial

boundaries mostly survived independence processes and still separate today’s modern African

countries.

Several ethnic groups inhabited the African continent before colonization, and the limits of their

territories were very different from the boundaries erected by colonial powers. Asiwaju (1985)

identifies 177 “culture areas”, and every country border in Africa cuts through at least one.

For instance, the boundaries of Burkina Faso cut through 21 culture areas. One of the most
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comprehensive atlas of the ethnic cultures inhabiting Africa before its colonization is arguably

Murdock (1959), who compiled anthropological descriptions of most African ethnicities in the

mid to late nineteenth century, describing the geography of the territories they inhabited, their

languages, economies and how their societies were organized. Murdock produced a tribal map

of Africa to accompany his book; this map, which some historians have deemed possibly quite

approximative, was first digitized by Nunn (2008).

3.2 National institutions and development

Following Michalopoulos and Papaioannou (2014), we intersect the “Tribal Map” from Murdock

(1959) with the map of modern national borders in Africa (GADM, 2018) to identify ethnic

groups that were partitioned by national borders, and use a spatial regression discontinuity

design, exploiting the arbitrary placement of national borders within the African continent

by European colonizers. The idea behind this is to compare the development levels of areas

near a national border—areas that share similar geographic features and that were exposed

to the same pre-colonial institutions and customs, but that are exposed to different current

national institutions. Some ethnic groups were split into 3 or more countries—in such cases,

we focus on the pair of countries with the biggest combined ethnic area. There are a total of

243 partitioned ethnicities across 47 countries. In our dataset, 318,887 patches belong to one

of these partitioned ethnicities.

We estimate the following equation:

Devp,e,c = α + β National Institutionshighe,c + f(BDp,e,c) +X ′
p,e,cΓ + δe + εp,e,c (1)

Where devp,e,c is one of our development outcomes for patch p in the ethnicity e in country c,

National Institutionshighe,c is a dummy denoting if country c has a higher institutional quality than

the country on the other side of the border, f(BDp,e,c) is a first degree polynomial (estimated

separately on each side of the border) in the running variable, BDp,e,c, the distance from the

centroid of patch p to the relevant national border that partitions ethnicity e, X ′
p,e,c is a vector

of characteristics and δe is a ethnicity level fixed effect. Standard errors are clustered at the

country level, the level at which the independent variable of interest (national institutions)
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varies. We follow Calonico et al. (2014) to estimate the optimal RD bandwidth.8

Our primary development outcomes are the predicted infrastructure access measures for the

year 2015 described in Subsection 2.4, along with an indicator variable indicating if a patch

of land is lit according to Night Lights 2015, the logarithm of Population Density 2015, the

distance to the closest road up to the tertiary level for the patch of land and an index of our

outcomes derived from the first component of a Principal Components Analysis. We control

for distance to the capital, distance to the coast, closest diamond and petroleum sources inside

and outside the country, temperature suitability for Malaria, land suitability for agriculture,

elevation, distance from the equator and whether a country is landlocked.

As for the independent variable (institutional quality), there are several measures available in

the literature, and among them, we use 4 measures: Rule of Law and Control of Corruption

from the Worldwide Governance Indicators (Kaufmann et al., 2011), the Polity IV score from

the Center for Systemic Peace (Marshall et al., 2019) and the Electoral Democracy index from

Varieties of Democracy Dataset version 11 (Coppedge et al., 2021). Rule of Law captures

perceptions of the extent to which agents have confidence in and abide by the rules of society,

and in particular the quality of contract enforcement, property rights, the police, and the courts,

as well as the likelihood of crime and violence. Control of Corruption captures perceptions of

the extent to which public power is exercised for private gain, including both petty and grand

forms of corruption, as well as “capture” of the state by elites and private interests. The

Polity score of a country captures this regime authority spectrum on a 21-point scale ranging

from -10 (hereditary monarchy) to +10 (consolidated democracy). The Electoral Democracy

index captures to what extent the ideal of electoral democracy in its fullest sense is achieved,

with politicians that are responsive to citizens, competitive and fair elections, and freedom of

expression and press.

For each institutional variable we use the average value over the period 1996-2015. We also

combine them in an index of institutions, using the first component of a Principal Component

Analysis. There is heterogeneity in these various measures across African nations, as shown in

8To use the same bandwidth for all outcomes, we create a PCA index of the key development outcomes and
use it as the dependent variable in a uniform kernel. Doing this, we obtained an optimal bandwidth of 49.5
kilometers for each side of the border.
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Figure 5.

Figure 5: National Institutions: Index of institutions
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3.2.1 National institutions and development: Results

Figure 6 plots the results of the analysis of how overall institution quality matters for overall

development. We see a clear jump at the border, with patches in the country with higher

institutional quality exhibiting higher levels of infrastructure development. We show the

breakdown by outcome in Figure A.1. There is a clear discontinuity for four of six

outcomes.9.

Table 3 shows the coefficient estimates and standard errors. In Panel A we report the results

for the PCA index of institutions, while in Panel B we show the results for each of the four

measures of institutional quality considered separately. We see very consistent, positive and

9We show the non-residualized plots in Figure A.2 and Figure A.3
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Figure 6: Discontinuity around national borders
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significant results across outcome measures and across institutional quality measures. Crossing

from a country with lower institutional quality to a country with higher institutions quality

increases the overall infrastructure access index by 0.19 standard deviations, the likelihood of a

patch being lit increases by 3.54 percentage points, the likelihood of having access to electricity,

sewerage and piped water increases by 1.72, 1.12 and 1 percentage points, respectively. Patches

in countries with higher institutional quality are also on average 4.73 kilometers closer to the

closest road.

Interpreting the magnitudes To get a sense of what it means to “cross” a national border

to the side with better institutions, Figure 7 reports the distribution of the differences in

our index of institutions for all country pairs in our sample. The mean gap is 1.07, which

corresponds to 0.77 standard deviations in the country distribution of the institutions’ quality

index. As an example, crossing from the Democratic Republic of Congo to Uganda, the quality

of institutions index increases by 1.1 points, reflecting Uganda’s higher Rule of Law and Control

of Corruption scores. When crossing from Zimbabwe to Mozambique we see an increase in the

index of institutions of 2.5 points, due to Mozambique’s much higher scores in Rule of Law,

Control of Corruption and Polity IV. Finally, going from Côte d’Ivoire (which experienced two

civil wars since the beginning of the 21st century) to Ghana corresponds to a jump in the
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Table 3: Institutions and Development: RD Results

(1) (2) (3) (4) (5) (6) (7)
Outcome Index Nightlights Electricity Sewerage Piped water Dist. Road Pop. Density

Panel A: index of institutional quality (PCA)

Index of institutions (PCA) 0.1949*** 0.0354*** 0.0172** 0.0119** 0.0105** -4.7360* 0.2756
(0.054) (0.011) (0.008) (0.005) (0.005) (2.716) (0.221)
{0.00} {0.00} {0.03} {0.02} {0.04} {0.09} {0.22}

Observations 82,082 82,088 82,082 82,082 82,082 82,088 82,088

Panel B: breakdown by measure of institutional quality

Rule of Law 0.0846* 0.0362*** 0.0069 0.0085** 0.0097** 6.1918** 0.1619
(0.046) (0.009) (0.007) (0.004) (0.004) (2.477) (0.210)
{0.07} {0.00} {0.31} {0.04} {0.04} {0.02} {0.45}

Control of Corruption 0.1019** 0.0301*** 0.0063 0.0075** 0.0081* -0.9470 0.0487
(0.048) (0.009) (0.006) (0.004) (0.004) (2.324) (0.198)
{0.04} {0.00} {0.32} {0.04} {0.07} {0.69} {0.81}

Polity IV Score 0.1385** 0.0330*** 0.0172** 0.0065* 0.0071 -6.1547** -0.0929
(0.060) (0.012) (0.007) (0.004) (0.005) (2.438) (0.265)
{0.03} {0.01} {0.02} {0.08} {0.12} {0.02} {0.73}

Electoral democracy 0.2147*** 0.0418*** 0.0174** 0.0065 0.0098* -4.4450 0.5798***
(0.052) (0.012) (0.008) (0.004) (0.005) (2.663) (0.175)
{0.00} {0.00} {0.03} {0.12} {0.06} {0.10} {0.00}

Observations 82,082 82,088 82,082 82,082 82,082 82,088 82,088

Notes: We include ethnicity level fixed effects, standard errors are clustered at the country level and are reported in parentheses, p-values are reported
in curly brackets.

institutional quality index of more than 3 points.

Figure 7: Gaps in index of institutions across national borders
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Comparing the coefficient estimates in Table 3 to the interquartile ranges shown in Table B.4,

we see that crossing a national border to the side with better institutions increases access to
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infrastructure by up to 1/3 of the interquartile range of the country-level distribution of that

infrastructure outcome across Africa. Rescaling, this means a one standard deviation gain in

institutional quality increases access to infrastructure by at most 0.33/0.77=42%. This is not

a trivial effect, but it is much smaller than the estimates in Acemoglu et al. (2001), which find

that a one standard deviation increase in protection against expropriation risk increases GDP

per worker by between 100% and 300%, suggesting that the results in Acemoglu et al. (2001)

may have been upward bias—in line with the conclusion of Pande and Udry (2005), which

show that the Acemoglu et al. (2001) approach would imply a one standard deviation gain in

institutional quality would (implausibly) move a country from the 25th percentile to the 75th

percentile in the headcount ratio distribution.

3.2.2 Robustness checks

Table 4 shows a battery of robustness checks. We focus on the the specification using the PCA

index of institutions. Panel A reproduces the results from Panel A of Table 3 for benchmarking.

Panel B shows the results excluding controls. The results are unchanged. Panel C focuses on

borders with large discontinuities (defined as a difference in institutional quality across the two

sides of the border above the median). Unsurprisingly, the coefficients increase, consistent with

a “dose response” effect of institutional quality. Panel D focuses on the subsample of borders

with the same colonizer on both sides.10 The sample size shrinks, but most of the results stand.

Finally, Panel E shows that the results mostly hold when we focus on patches far away from

the capital of their respective countries.11

Figure 8 checks whether the results are affected by the RD specification choices. Panel A shows

that the estimated impact of institutional quality on outcomes is unaffected by the polynomial

degree choice. Panel B shows that the effect, if anything, increases with bandwidth size. Finally,

10In appendix E we present information on the colonizer both (a) following the “scramble for Africa” and
(b) at the time of independence, and present results using one or the other.

11A straightforward way to define patches away from capital cities would be to just exclude patches within a
certain radius of their respective capitals. A potential problem with this is that it could lead to ethnicities with
a very unbalanced number of patches between the two sides of the border, if only one side is close to the capital
of a country. To solve this, for each ethnicity we assign each patch a “match” on the other side of the border
(its symmetric), so each patch has a unique counterpart on the other side of the border that is at a very similar
distance from the border. To match them, we use the Hungarian Algorithm. We then focus on the sample of
paired patches and estimate the previous specification only for pairs of patches where neither patch is within
300 km of the capital of their respective country.
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Table 4: Alternative RD specifications

Outcome Index Nightlights Electricity Sewerage Piped water Dist. Road Pop. Density

Panel A. Main specification:
Index of institutions (PCA) 0.1949*** 0.0354*** 0.0172** 0.0119** 0.0105** -4.7360* 0.2756

(0.054) (0.011) (0.008) (0.005) (0.005) (2.716) (0.221)
{0.00} {0.00} {0.03} {0.02} {0.04} {0.09} {0.22}

Observations 82,082 82,088 82,082 82,082 82,082 82,088 82,088

Panel B. No controls:
Index of institutions (PCA) 0.1650*** 0.0284*** 0.0111** 0.0068** 0.0075* -2.3909 0.5415**

(0.051) (0.010) (0.005) (0.003) (0.004) (2.707) (0.224)
{0.00} {0.01} {0.03} {0.02} {0.05} {0.38} {0.02}

Observations 82,083 82,089 82,083 82,083 82,083 82,089 82,089

Panel C. Large discontinuities:
Index of institutions (PCA) 0.2190** 0.0598*** 0.0124 0.0181** 0.0104 -2.5703 0.2375

(0.083) (0.017) (0.012) (0.007) (0.009) (2.078) (0.217)
{0.01} {0.00} {0.32} {0.01} {0.24} {0.22} {0.28}

Observations 43,184 43,190 43,184 43,184 43,184 43,190 43,190

Panel D. Ethnicities with the same colonizer:
Index of institutions (PCA) 0.1312* 0.0467** 0.0317*** 0.0182** 0.0077 -0.5426 -0.6146***

(0.065) (0.020) (0.010) (0.008) (0.009) (4.022) (0.212)
{0.05} {0.02} {0.00} {0.03} {0.40} {0.89} {0.01}

Observations 29,667 29,673 29,667 29,667 29,667 29,673 29,673

Panel E. Neither patch within 300 km of the capital:
Index of institutions (PCA) 0.1733*** 0.0286*** 0.0105 0.0072* 0.0092 -7.7710** 0.2536

(0.056) (0.010) (0.007) (0.004) (0.006) (3.374) (0.249)
{0.00} {0.01} {0.12} {0.06} {0.15} {0.03} {0.32}

Observations 44,397 44,403 44,397 44,397 44,397 44,403 44,403

Notes: We include ethnicity level fixed effects, standard errors are clustered at the country level and are reported in parentheses,
p-values are reported in curly brackets.

21



in Panel C we vary the polynomial degree and re-compute the optimal bandwidth (our optimal

bandwidth is increasing in the polynomial degree, as reported in Table B.5). The magnitude

of the coefficient is very stable.12

Figure 8: Robustness of results to RD polynomial degree and bandwidth
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Another possible concern is that we are considering six outcomes, so at a 5% significance level

we have a 26% probability (1 − 0.956) of a false rejection for each one of our institutional

measures. In Table B.6 we show that adjusting the p-values to account for multiple

hypotheses testing does not alter the key finding that institutional quality matters for

infrastructure access. Specifically, for each institutional variable we compute the sharpened

False Discovery Rate p-values described in Anderson (2008), using the main RD specification

with fist degree RD polynomials, the optimal bandwidth, controls, fixed effects and clustered

standard errors. For each specification shown in Table 3, we report the regression coefficients,

p-values computed without clustering, clustered p-values, and sharpened False Discovery Rate

clustered p-values.

12These robustness checks are shown for each outcome separately in Figure A.4, Figure A.5 and Figure A.6.
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4 Application II: Distributive Politics

Distributive politics, or how politicians and policy makers allocate public goods and services, is

a major determinant of welfare, specially when it comes to infrastructure, because connecting an

area to the electrical grid, the sewage system, improving access to piped water, or building roads

to improve their connectivity can also lead to further opportunities for economic development.

Starting with Bates (1974), ethnicity has been the focus of analyses of distributive allocations

in Sub-Saharan Africa: see for example Burgess et al. (2015) and more recently Dreher et al.

(2019). This literature typically focuses on one type of good in one country. But, as shown

by Kramon and Posner (2013), there are many goods and services allocated simultaneously

by governments, and if one group receives more roads, another may receive more health care.

Golden and Min (2013) thus call for studies that consider multiple goods before clear patterns

of political favoritism can be established.

We use our dataset to study the extent to which the allocation of infrastructure across

geographical units within a country is consistent with ethnic favoritism, a phenomenon where

politicians prioritize the geographies where their ethnicity resides when allocating public

resources. We compute average infrastructure access at the second-level administrative unit

(the next smallest unit after a state or region), and merge the dataset with information on the

ethnicity of presidents since independence (or 1960 for countries that were never colonized)13.

Despite the non-causal nature of our results, our dataset can be used to produce evidence the

effects of ethnic favoritism over all African countries, and over the allocation of multiple types

of infrastructure.

To do this, we estimate the following equation:

Devg,c = α + β Tiesg,c +X ′
g,cΨ + δc + εg,c (2)

Where Devg,c represents the average development outcome at second-level administrative unit

g in country c, Tiesg,c is an indicator of geographical unit g containing the birthplace of any

president ever elected in country c (a proxy for their ethnic homeland), which means one of

13We use the dataset built by Dreher et al. (2019) covering the period between 2000 to 2012, and add
hand-collected data between the years 1960 to 2000.
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these presidents has political ties to unit g, X ′
g,c is a vector of geographic controls, and δc are

country fixed effects. Standard errors are clustered at the country level.

In Panel A of Table 5 reports the result of estimating Equation (2), where we find a strong

positive correlation between political ties and infrastructure access across all infrastructure

measures considered. In Panel B we control for areas being far from the capital and we interact it

with our political tie variable. Our findings suggest areas political ties affect more the allocation

of infrastructure in areas closer to national capitals compared to our baseline, geographies that

are close to the capital but have no political ties. Areas that are far from the capital and have

no political ties have less access to infrastructure, but areas that are far from the capital that

have ties to a president don’t experience reduced access to infrastructure (their net effect is not

statistically significant for any outcome). This means that political ties prevent geographies

from suffering the negative effects of being far away from capital cities.

Table 5: Allocation of basic infrastructure

Outcome Index Nightlights Electricity Sewerage Piped water Dist. Road

Panel A:
Political tie 1.1637*** 0.8428*** 0.0990*** 0.1209*** 0.1081*** -0.4414**

(0.238) (0.267) (0.021) (0.032) (0.024) (0.210)
{0.00} {0.00} {0.00} {0.00} {0.00} {0.04}

Outcome mean 1.88 0.48 0.46 0.23 0.44 1.35
Observations 4,633 4,633 4,633 4,633 4,633 4,633
R2 0.58 0.59 0.53 0.64 0.48 0.27

Panel B:
Political tie 1.2912*** 1.0315*** 0.0992*** 0.1500*** 0.1226*** -0.4522*

(0.264) (0.278) (0.027) (0.034) (0.029) (0.263)
{0.00} {0.00} {0.00} {0.00} {0.00} {0.09}

Far from capital -0.4074** -0.1127 -0.0473** -0.0283** -0.0370** 0.0623
(0.159) (0.080) (0.018) (0.011) (0.017) (0.367)
{0.01} {0.16} {0.01} {0.02} {0.04} {0.87}

Political tie × Far from capital -0.6657** -0.6915** -0.0288 -0.1133*** -0.0701* 0.0731
(0.322) (0.273) (0.038) (0.033) (0.041) (0.501)
{0.04} {0.01} {0.46} {0.00} {0.09} {0.88}

Outcome mean 1.88 0.48 0.46 0.23 0.44 1.35
Observations 4,633 4,633 4,633 4,633 4,633 4,633
R2 0.60 0.61 0.54 0.66 0.50 0.27
p-value of sum of coefficients 0.28 0.20 0.38 0.56 0.48 0.43

Notes: The unit of observation is a subnational geographic unit. The sample contains administrative level-2 (ADM2)
units from 39 countries and administrative level-1 units from 7 countries for which ADM2 was not available. We
include country-level fixed effects, standard errors are clustered at the country level and are reported in parentheses,
and p-values are reported in curly brackets.

Studying sub-national allocation of roads in Kenya, Burgess et al. (2015) find that democracy

constrains ethnic favoritism: expenditures on roads are twice larger in districts that share the
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ethnicity of the president during non-democratic periods, but there is no difference during

periods of democracy. Building on this, Panel A of Table 6 examines whether parochialism is

mitigated by good institutions. In other words, we ask: does having higher quality institutions

keep presidents in check? For this, we add an interaction term between political tie and the

country-level index of institutional quality described in section 3. The estimates in column 1

imply that a one standard deviation increase in institutional quality reduces the role of political

ties in the allocation of infrastructure by about 20%. These mitigating effects range between

9.8% for access to roads to 27% for electricity.

Table 6: Political Ties, Institutional Quality and International Aid

Outcome Index Nightlights Electricity Sewerage Piped water Dist. Road

Panel A: Institutional quality
Political tie 1.3746*** 1.0350*** 0.1144*** 0.1483*** 0.1230*** -0.4005

(0.272) (0.298) (0.026) (0.035) (0.028) (0.240)
{0.00} {0.00} {0.00} {0.00} {0.00} {0.10}

Political tie × Index of institutions -0.3053** -0.1381 -0.0309** -0.0298 -0.0215* 0.0396
(0.144) (0.130) (0.014) (0.018) (0.012) (0.126)
{0.04} {0.30} {0.03} {0.10} {0.09} {0.75}

Outcome mean 1.88 0.48 0.46 0.23 0.44 1.35
Observations 4,633 4,633 4,633 4,633 4,633 4,633
R2 0.58 0.60 0.53 0.65 0.48 0.27

Panel B:International aid
Political tie 1.2054* 0.5253 0.1066 0.1317* 0.0904 -0.6154

(0.659) (0.328) (0.072) (0.075) (0.056) (0.436)
{0.07} {0.12} {0.14} {0.09} {0.11} {0.16}

Political tie × High total aid 0.0553 0.5890 -0.0066 0.0055 0.0308 0.3012
(0.717) (0.506) (0.073) (0.086) (0.064) (0.511)
{0.94} {0.25} {0.93} {0.95} {0.63} {0.56}

Outcome mean 1.88 0.48 0.46 0.23 0.44 1.35
Observations 4,633 4,633 4,633 4,633 4,633 4,633
R2 0.58 0.61 0.52 0.65 0.48 0.27
p-value of sum of coefficients 0.00 0.00 0.00 0.00 0.00 0.23

Notes: The unit of observation is a subnational geographic unit. The sample contains administrative level-2 (ADM2)
units from 39 countries and administrative level-1 units from 7 countries for which ADM2 was not available. We include
country-level fixed effects, and standard errors are clustered at the country level and are reported in parentheses. We
control for distance to the capital, distance to the coast, closest diamond and petroleum sources inside and outside the
country, temperature suitability for Malaria, land suitability for agriculture, elevation, distance from the equator, and
area of the administrative unit. ***, **, and * indicate statistical significance at 1%, 5%, and 10% significance levels,
respectively.

Our last analysis, shown in Panel B of Table 6, considers the role of foreign aid in the

allocation of infrastructure within countries. Countries that are receiving aid from foreign

organizations could be under more scrutiny, and their leaders might have a harder time

allocating infrastructure to geographic areas with political ties to them. To test this

hypothesis, we start by splitting countries into two groups, those receiving aid above the
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median, and those who receive aid below the median in terms of total aid received between

2000 and 2014, according to the OECD’s Creditor Reporting System (CRS), to then interact

our proxy of ethnic favoritism with an indicator variable of receiving high total international

aid. We find not only that areas with political ties have on average better access to

infrastructure, but that international aid further exacerbates this effect for all outcomes,

except access to roads. We report that the p-value of the sum of both coefficients is 0 for

almost all variables, so the effect of political connections for countries that receive high aid is

positive and statistically significant.

5 Conclusion

This paper utilizes satellite imagery and deep learning models to generate novel data on

infrastructure access for every single 6.72km × 6.72km area of Africa. We combine household

surveys and satellite imagery to train a machine learning model to predict infrastructure

access (access to piped water, sewerage and electricity). Models achieve accuracy levels of

77.1% to 84.7%. Using different metrics to evaluate model performance, we find that recall

ranges between 68% and 82%, and specificity is between 74% and 91%, which indicates that

our models predict both instances of access and lack of access to infrastructure accurately.

Additionally, our models perform well out of sample, and particularly dominate alternatives

in remote areas. We combine our predictions with other data sources to produce a very rich

and granular development dataset with access to infrastructure outcomes and geographic

characteristics for the entirety of the African continent.

We showcase the value of this data with a few applications, revisiting some old debates in

the political economy literature. We find that the quality of national institutions over the

past 20 years has played a significant role in infrastructure access, with effects of a modest but

positive magnitude that help reconcile previous conflicting results in this literature. We provide

evidence of ethnic favoritism in the allocation of infrastructure within African countries, how

this effect can be mitigated by being closer to capital cities or having better institutions, and

how receiving foreign financial aid can exacerbate this problem.

These empirical findings call for future research. First, our machine learning models could be
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used with imagery with a better spatial resolution, so an even more granular dataset could be

produced. The model could also be modified to train with imagery that changes over time, to

generate panel data on infrastructure access. This would help study how changes in

institutions over time affect access to infrastructure, and even more importantly, how

presidential political ties (which change in more drastic ways that national institutions as new

presidents are elected) affect the allocation of infrastructure over time. Finally, our ethnic

favoritism application shows evidence of a correlation between political ties and access to

infrastructure, so a better identification strategy that makes use of this dataset could unveil

causal evidence on this topic.
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A Appendix Figures

Figure A.1: Discontinuity around national borders, by outcome (residualized)
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Note: The country with the better institutions is on the right (positive distance to the border).

Figure A.2: Discontinuity around national borders (not residualized)
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33



Figure A.3: Discontinuity around national borders, by outcome (not residualized)
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Figure A.4: National Institutions: Robustness to polynomial degree choice
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Figure A.5: National Institutions: Robustness to bandwidth choice
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Figure A.6: National Institutions: Robustness to polynomial degree with optimal bandwidth
choice

.01

.02

.03

.04

.05

.06

C
oe

ffi
ci

en
t

1 2 3 4
RD polynomial degree

Nighttime Lights

0

.01

.02

.03

.04

.05

C
oe

ffi
ci

en
t

1 2 3 4
RD polynomial degree

Electricity

0

.005

.01

.015

.02

.025

C
oe

ffi
ci

en
t

1 2 3 4
RD polynomial degree

Sewerage

-.01

0

.01

.02

.03

C
oe

ffi
ci

en
t

1 2 3 4
RD polynomial degree

Piped Water

-15

-10

-5

0

C
oe

ffi
ci

en
t

1 2 3 4
RD polynomial degree

Dist. to Closest Road

-.5

0

.5

1

C
oe

ffi
ci

en
t

1 2 3 4
RD polynomial degree

Population Density

36



B Appendix Tables

Table B.1: Model Performance for Infrastructure Outcomes: Urban vs. Rural

Mean Accuracy Recall Specificity AUCROC
Electricity
Urban 0.934 0.845 0.866 0.545 0.706
Rural 0.328 0.824 0.753 0.859 0.806

Piped water
Urban 0.863 0.818 0.865 0.522 0.693
Rural 0.324 0.745 0.667 0.782 0.725

Sewerage
Urban 0.642 0.713 0.721 0.700 0.710
Rural 0.069 0.922 0.488 0.955 0.721

Note: All performance metrics were computed in our test sample.

Table B.2: Datasets for the validation exercises

Survey Year Landsat Nightlight Exporting
Period Period Method

Training Dataset
Afrobarometer R6 (multi-country) 2014-2015 2014-2015 2015-2016 centroid

Validation datasets: Same Time Period, Different Levels
Household Access
Neno & Mwanza, Malawi (rural) 2015 2014-2015 2015-2016 patch level
Greater Abidjan, Côte d’Ivoire (urban) 2014 2014-2015 2015-2016 patch level
Greater Addis Ababa, Ethiopia (urban) 2016 2014-2015 2015-2016 patch level

Institutional Access
Ghana schools (country-wide) 2015 2014-2015 2015-2016 centroid

Validation datasets: Different Time Periods
Afrobarometer R5 (multi-country) 2011-2013 2011-2013 2012-2014 centroid
Greater Addis Ababa, Ethiopia (urban) 2018 2018 2018 patch level
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Table B.3: Validation Results

Dataset
Benchmark-NL Model - R6

Electricity Piped Water Sewerage Electricity Piped Water Sewerage
Afrobarometer R5
All 0.59 0.56 0.28 0.74 0.66 0.79
Urban 0.92 0.85 0.61 0.84 0.76 0.66
Rural 0.40 0.40 0.09 0.69 0.59 0.86
Border 0.42 0.48 0.15 0.69 0.60 0.83

Ghana
All 0.89 0.50 0.88 0.58
Urban 0.97 0.58 0.94 0.62
Rural 0.83 0.44 0.82 0.55
Border 0.89 0.28 0.85 0.34

Other surveys
Addis - W1 0.84 0.65 0.22 0.71 0.52 0.71
Addis - W2 0.75 0.47 0.67 0.58
Abidjan 0.80 0.54 0.05 0.75 0.58 0.76
Malawi (Rural) 0.56 0.56 0.53 0.95 0.95 1.00

Note: On the first 3 columns, we display the accuracy on different validation datasets of a “naive” model
based in nighttime lights: we predict that there is access to infrastructure if nighttime lights are positive. The
next 3 columns show the accuracy of our convolutional neural network model trained with Afrobarometer R6
groundtruth and satellite imagery.

Table B.4: Distribution of Infrastructure Measures Across Countries

(1) (2) (3) (4) (5) (6) (7)
Outcome Index Nightlights Electricity Sewerage Piped water Dist. Road Pop. Density

Mean 0.35 0.20 0.37 0.16 0.38 56.15 0.02
Std. Dev. 2.45 0.22 0.19 0.06 0.15 284.30 2.94
Minimum -15.64 0.00 0.09 0.08 0.12 0.05 -4.61
Percentile 25 -0.09 0.05 0.24 0.12 0.29 0.91 -2.58
Median 0.62 0.10 0.36 0.14 0.37 4.00 0.26
Percentile 75 1.26 0.29 0.46 0.17 0.41 15.29 2.24
Maximum 3.93 0.96 0.89 0.36 0.84 2101.24 5.45
Interquartile Range 1.35 0.24 0.22 0.05 0.13 14.37 4.82
Coefficient/IQR 0.14 0.15 0.08 0.25 0.08 -0.33 0.06

Notes: We report country level summary statistics. Coefficient/IQR ratios are defined relative to coefficients in Panel A of Table 3.

Table B.5: Optimal bandwidth for different polynomial degrees

Polynomial degree Optimal bandwidth (km)

1 49.5
2 82.9
3 128.7
4 179.5
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Table B.6: Accounting for multiple hypothesis testing

Outcome Night lights Electricity Sewerage Piped water Dist. Road Pop. Density

Panel A. Index of institutions:
Coefficient 0.035 0.017 0.012 0.010 -4.736 0.276
Normal p-value 0.000 0.000 0.000 0.000 0.000 0.000
Clustered p-value 0.003 0.034 0.015 0.044 0.088 0.218
Clustered-FDR p-value 0.016 0.048 0.039 0.048 0.070 0.079

Panel B. Rule of Law:
Coefficient 0.036 0.007 0.008 0.010 6.192 0.162
Normal p-value 0.000 0.005 0.000 0.000 0.000 0.000
Clustered p-value 0.000 0.313 0.038 0.035 0.016 0.446
Clustered-FDR p-value 0.002 0.144 0.051 0.051 0.042 0.175

Panel C. Control of Corruption:
Coefficient 0.030 0.006 0.007 0.008 -0.947 0.049
Normal p-value 0.000 0.013 0.000 0.001 0.003 0.137
Clustered p-value 0.002 0.316 0.040 0.070 0.686 0.806
Clustered-FDR p-value 0.015 0.311 0.110 0.132 0.676 0.676

Panel D. Polity IV Score:
Coefficient 0.033 0.017 0.006 0.007 -6.155 -0.093
Normal p-value 0.000 0.000 0.000 0.002 0.000 0.004
Clustered p-value 0.008 0.016 0.083 0.125 0.015 0.727
Clustered-FDR p-value 0.034 0.034 0.067 0.081 0.034 0.176

Panel E. Electoral Democracy:
Coefficient 0.042 0.017 0.006 0.010 -4.445 0.580
Normal p-value 0.000 0.000 0.000 0.000 0.000 0.000
Clustered p-value 0.001 0.031 0.118 0.061 0.102 0.002
Clustered-FDR p-value 0.006 0.043 0.066 0.066 0.066 0.006
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C Appendix: Technical Notes on CNNs and

Calibration

C.1 Machine Learning Model

We build on the approach developed in Oshri et al. (2018). The first task consists in solving a
multi-label binary classification problem: Using as a input a satellite image X, we want to
predict whether a given enumeration area (our observation level) has or not access to
infrastructure defined by a set of binary label Y1, Y2, . . . , Yk ∈ {0, 1}. For each infrastructure
access label Yi we train a separate binary classifier hi(X) = {Ŷi, P̂i}, where Ŷi is a class
prediction and P̂i is the confidence associated to that prediction.

To tackle our binary image classification problem, we use deep learning techniques—algorithms
that combine a large amount of linear and non-linear functions in a hierarchical way, making
the algorithms very flexible, and thus allowing them to learn very complicated functional forms.
Convolutional Neural Networks (CNNs) are a class of deep learning algorithms used for image
classification tasks, with their main advantages being that they preserve the spatial structure
of images, and can learn patterns contained in images with fewer parameters than a regular
neural network. The hierarchical structure of CNNs allows the algorithms to extract basic or
low-level features from data, and then to aggregate these basic features to learn more complex
features. As the algorithms identify features without supervision, researchers no longer need to
program complex routines to identify edges or shapes.

We train a Residual Network (ResNet), a state-of-art CNN that has been shown to have good
performance for binary classification problems (He et al., 2016). We modify the structure of
the initial 18-layer Residual Network in 2 ways: we start by increasing the number of input
channels in the first convolutional layer, given that the original model was trained to classify
3 band images on ImageNet and we are using satellite imagery with six bands for the Landsat
data and 1 band for the VIIRS Nighttime data. We also modify the final fully connected
softmax layer of the model, that was originally meant to classify an image into 1,000 categories,
to work with a binary classification problem and predict the probability of an enumeration area
having access to an infrastructure variable. We initialize the weights for the RGB bands of the
Landstat images using the the ResNet pre-trained weights, and we use Xavier initialization to
initialize the weights of remaining Landsat and VIIRS Nighttime bands, given that drawing
initial values from the uniform distribution described in Glorot and Bengio (2010) has been
shown to lead to faster convergence. We follow the same strategy regarding data processing,
regularization and optimization as Oshri et al. (2018).

C.2 Calibration

Calibration consists in modifying the “confidence” (p̂i) produced by the model, in order for
the distribution of generated confidences to resemble the empirical distribution in the training
dataset, without affecting the accuracy of the model. Current deep learning models tend to
generate confidence levels that are very close to 0 or 1 for each observation, so they can get a
small loss function. As economists or political scientists, however, we care about the likelihood
that a given area has access to specific amenities—rather than the binary prediction, to the
extent that it is correlated with the level of development. In other words, if the model predicts
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that area A has electricity with probability 55%, area B has electricity with probability 65% and
area C with 85%, while all three areas would have a binary prediction of “1”, we want to be able
to interpret the A-C gap of 30 percentage points as having some cardinal interpretation: area C
is“more developed” than area A, and the gap in development between C and A is greater than
that between B and A. Calibration helps ensure that the confidence (the predicted likelihood)
can be interpreted in that way.

We use a post-estimation calibration technique called “temperature scaling” (Guo et al., 2017),
that works in the following way: After estimating the parameters in the Residual Network ĥi,
we compute scores ŝi with the data in our validation set. The scores are the inputs to the final
softmax layer of our network that generates the confidence or predicted probability p̂i. We
then run a logistic regression of the true classes in our validation set, ŷi, against our score, of
the form ŷi = σ( ŝi

T
+ ε), where σ is the logistic function. The newly estimated temperature

parameter is the logistic function. The newly estimated temperature parameter T̂ is then used
to adjust the confidence, so now we get the new calibrated prediction p̃i ≡ σ( ŝi

T̂
)

D Appendix: Dataset building

D.1 Grid of patches, national borders, valid patches

To build our dataset, we start by generating a grid of 6.72 by 6.72 km patches over all the
African continent. We built a map of the continent of Africa by aggregating country shapefiles
obtained from GADM (GADM, 2018) and GISCO (Eurostat, 2021), and then we divided it in
747,165 patches using the SF package for R (Pebesma, 2018).

We add to our grid the shapefiles containing the borders of the ethnical ethnicities of Africa
described in Murdock (1959), and we also add individual shapefiles for every African country
from GADM. We intersect both maps to identify ethnicities that are partitioned by national
borders.

Not every patch of land is useful for our analysis. First, we exclude patches that are in the
border of 2 ethnicities or 2 countries. We also use a water cover raster from the MOD44W
MODIS dataset (Carroll et al., 2017) and a forest cover raster from the Dynamic Land Cover
map from (Buchhorn et al., 2020). Patches marked as part of a forest or a water body are not
considered for our analysis, since they will mechanically have no access to infrastructure, and
this is caused by geographical factor rather than by national or pre-colonial institutions.

When studying ethnicities that are partitioned by national borders, it might be the case that
more than one country can be present in a partitioned ethnicity (for instance, the territory of
the Malinke ethnicity falls within 6 countries), and it there might also be discontinuities in the
distribution of the distance to the border within certain ethnicities caused by ethnicities and
countries that intersect in 2 separate areas, or parts of the territory of a ethnicity being mostly
covered by a forest or a water body, so in order to overcome this, we define a set of criteria
to assign patches in each ethnicity to the main border within the ethnicity and compute the
distance to the border to that border. To do this, we use the following iterative procedure:

1. We identify all the feasible borders within a ethnicity.
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2. We define the main border as the border separating 2 adjacent countries that combined
have the biggest share of the area of the ethnicity.

3. For each patch we compute the distance to the main border.

4. We check for discontinuities in the distribution of distance to the border. If there is a gap
of more than 10 km, all the patches outside the gap are no longer considered as belonging
to our previous main border, but they can be considered as a part of a different border.

5. If one of the sides of the ethnicity has less than 10 patches, or if after removing patches
due to a discontinuity we have another border covering a bigger area, we replace our main
border with the new biggest border and go back to step 3, and we repeat this until there
are no changes and we have a stable main border.

D.2 Outcomes and controls

We intersected our grid with several rasters of data, and we also added a lot of datasets to
include the following variables:

• Malaria temperature suitability: We obtained data for a temperature suitability for
P. Falciparum and P. Vivax transmission for 2010 from Gething et al. (2011). Their data
is at a resolution of 1 km by 1 km, so for each of our patches we take the average value
of all the pixels that fall inside them using Google Earth Engine (Gorelick et al., 2017).

• Land suitability: We obtained a measure of land suitability for agriculture from The
Atlas of the Biosphere (Ramankutty et al., 2002). This dataset has information about
the fraction of each cell that is suitable to be used for agriculture. The original raster file
is at a resolution of 0.5 degrees (approximately 55 kilometers around the Equator), so we
intersect our patches with this raster, and take the average suitability for the cases where
our patches lie within more than one cells of the original raster.

• Elevation: We use elevation data from the Shuttle Radar Topography Mission from
NASA (Farr et al., 2007) with a 30 meters resolution. For each of our patches of land we
take the average value of the raster with elevation using Google Earth Engine.

• Distance to the equator: To control for the distance to the equator, we take the
absolute value of the latitude of each patch.

• Distance to the capital: We compute our distance to the capital for each country by
retrieving the geographical coordinates of their capital using the R package
CoordinateCleaner (Zizka et al., 2019), and then we compute the distance to the capital
from each patch using the SF package (Pebesma, 2018).

• Distance to the coast: To define our distance to the coast, we combine the GADM
maps of all the African countries to obtain an outline of the African continent, and then
we compute the distance from each patch to the coast using the SF package.

• Distance to petroleum sources: We identify the location of petroleum sources with
the PETRODATA v1.2 dataset from the Peace Research Institute Oslo (Lujala et al.,
2007). For each patch, we again use the SF package to find the closest petroleum sources
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inside and outside of the country the patch belongs to, and then we compute the distance
to these 2 petroleum sources.

• Distance to diamond sources: We identify the location of diamond sources by using
the DIADATA v1a dataset from the Peace Research Institute Oslo (Gilmore et al., 2005).
For each patch, we use the SF package to identify the closest diamond sources inside and
outside of the country the patch belongs to, and then we compute the distance to these
2 diamond sources.

• Distance to the closest road: We use the GRIP global roads database to compute the
distance to the closest road for each patch of land in our grid (Meijer et al., 2018). This
dataset contains maps for all the type of roads (highways, primary, secondary, tertiary
and local roads) for all the continents, so we intersect this with country maps for Africa,
and for each patch we compute the distance to the closest road within their respective
country using the SF package in R.

• Nightlights: We use VIIRS Nighttime Light data (Elvidge et al., 2017). Specifically, we
use annual composites for the year 2015 of the version 1, where they preprocess imagery to
remove stray lights and outliers, average the annual data using only cloud-free luminosity
measurements, and sets the background lights to 0. These images have a resolution of 15
arc seconds (around 500m at the Equator), so we use Google Earth Engine to compute
the average luminosity for each of our patches of land.

• Population density:We use the Data For Good at Meta’s High Resolution Population
Density Maps (Tiecke et al., 2017), a product based on the Gridded Population of the
World v4 dataset (Center for International Earth Science Information Network, CIESIN,
2016) that uses computer vision algorithms to re-distribute population density within
territories according to the volume of the buildings in said territory. These predictions
have a 30 meter resolution, so for each patch of land in our grid we take the average value
of the pixels in the population density raster using Google Earth Engine.

E Colonizers and rulers at independence

The identification strategy in our first application relies on working with ethnicities that were
partitioned by national borders, so that we can compare territories that have common ethnic
origins and should not be too different apart from the different national institutions they are
exposed to. Despite this, we could also think that European colonizers shaped the early
institutions of modern African countries, so ethnicities that were separated into countries with
different colonizers could have underlying differences that can be confounded for differences in
national institutions.

To overcome this issue we produced a list of colonizers for each African country, and the we
use this to re-estimate our results using a sample of ethnicities that were partitioned into
countries with the same colonizers, or adding colonizer fixed effects. After World War I the
allies re-distributed the control of some African colonies, so as an extra robustness check we also
compiled a list of rulers at independence for most African countries, because rulers in the late
colonial days might have been more important than early colonizers. In table E.1 we present a
list of African countries, their colonizers and their rulers at the time of their independence. For
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some countries we couldn’t establish a single colonizer or ruler at independence: for instance,
Somalia was controlled by Great Britain and Italy, so we cannot assign it to a single colonizer
or ruler at independence. We code these colonizer and ruler into 3 categories:

Table E.1: Colonizers and rulers at independence in Africa

Country Colonizer Ruler at independence Country Colonizer Ruler at independence

Algeria France France Madagascar France France
Angola Portugal Portugal Malawi Great Britain Great Britain
Benin France France Mali France France

Botswana Great Britain Great Britain Mauritania France France
Burkina Faso France France Mauritius France Great Britain

Burundi Germany Belgium Mozambique Portugal Portugal
Côte d’Ivoire France France Namibia Germany Germany

Cameroon Germany - Niger France France
Cape Verde Portugal Portugal Nigeria - Great Britain

Central African Republic France France Republic of Congo France France
Chad France France Rwanda Germany Belgium

Comoros France France São Tomé and Pŕıncipe Portugal Portugal
Democratic Republic of the Congo Belgium Belgium Saint Helena Great Britain Great Britain

Djibouti France France Senegal France France
Egypt Great Britain Great Britain Seychelles Great Britain Great Britain

Equatorial Guinea Spain Spain Sierra Leone Great Britain Great Britain
Eritrea Italy Great Britain South Africa Great Britain Great Britain

Ethiopia Italy Italy South Sudan Great Britain Great Britain
Gabon France France Sudan Great Britain Great Britain
Gambia - Great Britain Swaziland Great Britain Great Britain
Ghana - Great Britain Tanzania Germany Great Britain
Guinea France France Togo Germany -

Guinea-Bissau Portugal Portugal Tunisia France France
Kenya - Great Britain Uganda Great Britain Great Britain

Lesotho Great Britain Great Britain Zambia Great Britain Great Britain
Liberia United States United States Zimbabwe Great Britain Great Britain
Libya Italy -

With these definitions we replicate our main results restricting our sample to ethnicities with
the same colonizers or the same rule at independence, or using our full sample with colonizer or
ruler at independence fixed effects. We only include fixed effects for France and Great Britain,
since all other colonizers and rulers combined controlled less than 25% of the territory in Africa.
In Table E.2 we present the results of these experiments: our results remain fairly similar to
the main results presented in Panel A of Table 3, with the coefficients for Nighttime lights,
Electricity, Sewerage, Piped ater and our PCA index being significant in most specifications, and
presenting coefficients with similar magnitudes to the ones we observed in our main results.
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Table E.2: Effects of colonizers/rulers at independence

Outcome Index Nightlights Electricity Sewerage Piped water Dist. Road Pop. Density

Panel A. Ethnicities with the same colonizer:
Index of institutions (PCA) 0.1312* 0.0467** 0.0317*** 0.0182** 0.0077 -0.5426 -0.6146***

(0.065) (0.020) (0.010) (0.008) (0.009) (4.022) (0.212)
{0.05} {0.02} {0.00} {0.03} {0.40} {0.89} {0.01}

Observations 29,667 29,673 29,667 29,667 29,667 29,673 29,673

Panel B. Colonizer fixed effects:
Index of institutions (PCA) 0.2085*** 0.0396*** 0.0184** 0.0125*** 0.0119** -5.3735** 0.2449

(0.049) (0.010) (0.008) (0.005) (0.005) (2.553) (0.211)
{0.00} {0.00} {0.02} {0.01} {0.02} {0.04} {0.25}

Observations 82,082 82,088 82,082 82,082 82,082 82,088 82,088

Panel C. Ethnicities with the same ruler at independence:
Index of institutions (PCA) 0.0939 0.0417** 0.0310*** 0.0173** 0.0019 3.0639 -0.5296**

(0.066) (0.019) (0.009) (0.008) (0.009) (3.873) (0.216)
{0.17} {0.04} {0.00} {0.03} {0.84} {0.44} {0.02}

Observations 30,753 30,759 30,753 30,753 30,753 30,759 30,759

Panel D. Ruler at independence fixed effects:
Index of institutions (PCA) 0.2004*** 0.0379*** 0.0176** 0.0122** 0.0110** -4.6497* 0.2779

(0.052) (0.010) (0.008) (0.005) (0.005) (2.704) (0.212)
{0.00} {0.00} {0.03} {0.01} {0.03} {0.09} {0.20}

Observations 82,082 82,088 82,082 82,082 82,082 82,088 82,088

Notes: We include ethnicity level fixed effects, standard errors are clustered at the country level and are reported in parentheses,
p-values are reported in curly braces.
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