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Introduction

We predicted asset ownership in Africa making use of Landsat-8 satellite imagery and ground
truth data from the Demographic and Health Surveys (DHS).
We trained a ResNet-18 model (He et al., 2016), a sub-class of a Convolutional Neural
Network (CNN), and used it to predict asset ownership levels over 6.72 km by 6.72 km patches of
land in Africa.
We used transfer learning to train our model to perform a regression task, initializing our model
with weights originally used to classify images.
The performance of our best model is much better than the performance of our baseline models, but
our model might be overfitting, and the predictions it generates are far off from our ground truth data.
We obtained lower R2 validation set values than Yeh et al. (2020), a paper that attempts our same
task.

Ground truth: Demographic and Health Surveys (DHS) surveys

We combined all the household DHS surveys for African countries that have been published since 2014
that have a matching file with the geocoordinates of each cluster.
Our variable of interest is the score in the wealth index obtained by each household. This score is
produced using Principal Component Analysis over survey questions, including but not limited to
access to drinkable water, sewerage, electricity, and ownership of farming and non-farming assets.
We geocoded 12,511 locations across 24 countries, combining data from 26 DHS surveys between
2014 and 2021.
In Panel (a) of Figure 1 we show the spatial distribution of our ground truth data.

Satellite images: Landsat-8 Surface Reflectance collection

We retrieved imagery using the Google Earth Engine API. For each DHS cluster with a geocoded
location, we defined a patch of 6.72 km × 6.72 km centered in our location, and we retrieved an
image for the patch using the Landsat 8 Surface Reflectance Tier 1 Collection.
We used 3 bands from this collection: Red, Green and Blue surface reflectance. We preprocessed each
of our images by adding a cloud mask per pixel and then computing the per pixel and band mean
composite of all the available images for the year when the DHS cluster was surveyed.
We retrieved images for 12,426 locations across all Africa. In Figure Panels (b) and (c) of Figure 1 we
show some examples of the cloud masked imagery we produced.

Table 1. Training, validation and test set sizes

Set Training Validation Test
Observations 9,941 1,243 1,242

Figure 1. Ground truth spatial distribution and examples of images
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Summary

We predict asset ownership in Africa making use of Landsat-8 satellite imagery and ground truth data
from the Demographic and Health Surveys (DHS).
We train a ResNet-18 model (He et al., 2016), a sub-class of a Convolutional Neural Network (CNN),
and use it to predict asset ownership levels over 6.72 km by 6.72 km patches of land in Africa.
We use transfer learning to train our model to perform a regression task, starting our model with
weights originally used to classify images.
Results.

Ground truth: Demographic and Health Surveys (DHS) surveys

We combined all the household DHS surveys for African countries that have been published since 2014
that have a matching file with the geocoordinates of each cluster.
Our variable of interest is the score in the wealth index obtained by each household. This score is
produced using Principal Component Analysis over survey questions, including but not limited to
access to drinkable water, sewerage, electricity, and ownership of farming and non-farming assets.
We geocoded 12,511 locations across 24 countries, combining data from 26 DHS surveys between
2014 and 2021.
In Panel (a) of Figure ?? we show the spatial distribution of our ground truth data.

Satellite images: Landsat-8 Surface Reflectance collection

We retrieved imagery using the Google Earth Engine API. For each DHS cluster with a geocoded
location, we define a patch of 6.72 km × 6.72 km centered in our location, and we retrieve an image
for the patch using the Landsat 8 Surface Reflectance Tier 1 Collection (USGS, 2013).
We use 3 bands from this collection: Red, Green and Blue surface reflectance. We preprocess each of
our images by adding a cloud mask per pixel and then computing the per pixel and band mean
composite of all the available images for the year when the DHS cluster was surveyed.
We retrieved images for 12,426 locations across all Africa. In Figure Panels (b) and (c) of Figure ??
we show some examples of the cloud masked imagery we produced.

Table 1. Training, validation and test set sizes

Set Training Validation Test
Observations 9,941 1,243 1,242

Figure 1. Ground truth spatial distribution and examples of images
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(a) Location of DHS clusters in Africa

(b) Image from Kenya

(c) Image from Angola

A block containing an enumerated list

Vivamus congue volutpat elit non semper. Praesent molestie nec erat ac interdum. In quis suscipit erat.
Phasellus mauris felis, molestie ac pharetra quis, tempus nec ante. Donec finibus ante vel purus
mollis fermentum. Sed felis mi, pharetra eget nibh a, feugiat eleifend dolor. Nam mollis condimentum
purus quis sodales. Nullam eu felis eu nulla eleifend bibendum nec eu lorem. Vivamus felis velit, volutpat
ut facilisis ac, commodo in metus.

1. Morbi mauris purus, egestas at vehicula et, convallis accumsan orci. Orci varius natoque penatibus
et magnis dis parturient montes, nascetur ridiculus mus.

2. Cras vehicula blandit urna ut maximus. Aliquam blandit nec massa ac sollicitudin. Curabitur
cursus, metus nec imperdiet bibendum, velit lectus faucibus dolor, quis gravida metus mauris gravida
turpis.

3. Vestibulum et massa diam. Phasellus fermentum augue non nulla accumsan, non rhoncus lectus
condimentum.

Fusce aliquam magna velit

Et rutrum ex euismod vel. Pellentesque ultricies, velit in fermentum vestibulum, lectus nisi pretium nibh,
sit amet aliquam lectus augue vel velit. Suspendisse rhoncus massa porttitor augue feugiat molestie. Sed
molestie ut orci nec malesuada. Sed ultricies feugiat est fringilla posuere.

Figure 2. Another figure caption.

Nam cursus consequat egestas

Nulla eget sem quam. Ut aliquam volutpat nisi vestibulum convallis. Nunc a lectus et eros facilisis hendrerit
eu non urna. Interdum et malesuada fames ac ante ipsum primis in faucibus. Etiam sit amet velit eget
sem euismod tristique. Praesent enim erat, porta vel mattis sed, pharetra sed ipsum. Morbi commodo
condimentum massa, tempus venenatis massa hendrerit quis. Maecenas sed porta est. Praesent mollis
interdum lectus, sit amet sollicitudin risus tincidunt non.
Etiam sit amet tempus lorem, aliquet condimentum velit. Donec et nibh consequat, sagittis ex eget,
dictum orci. Etiam quis semper ante. Ut eu mauris purus. Proin nec consectetur ligula. Mauris pretium
molestie ullamcorper. Integer nisi neque, aliquet et odio non, sagittis porta justo.

Sed consequat id ante vel efficitur. Praesent congue massa sed est scelerisque, elementum mollis
augue iaculis.

In sed est finibus, vulputate nunc gravida, pulvinar lorem. In maximus nunc dolor, sed auctor eros porttitor quis.
Fusce ornare dignissim nisi. Nam sit amet risus vel lacus tempor tincidunt eu a arcu.
Donec rhoncus vestibulum erat, quis aliquam leo gravida egestas.

Sed luctus, elit sit amet dictum maximus, diam dolor faucibus purus, sed lobortis justo erat id
turpis.
Pellentesque facilisis dolor in leo bibendum congue. Maecenas congue finibus justo, vitae eleifend
urna facilisis at.

A block containing some math

Nullam non est elit. In eu ornare justo. Maecenas porttitor sodales lacus, ut cursus augue sodales ac.
∫ ∞

−∞
e−x2 dx =

√
π

Interdum et malesuada fames {1, 4, 9, . . .} ac ante ipsum primis in faucibus. Cras eleifend dolor eu nulla
suscipit suscipit. Sed lobortis non felis id vulputate.

A heading inside a block
Praesent consectetur mi x2+y2 metus, nec vestibulum justo viverra nec. Proin eget nulla pretium, egestas
magna aliquam, mollis neque. Vivamus dictum u⊺v sagittis odio, vel porta erat congue sed. Maecenas ut
dolor quis arcu auctor porttitor.

Another heading inside a block
Sed augue erat, scelerisque a purus ultricies, placerat porttitor neque. Donec P(y | x) fermentum con-
sectetur ∇xP(y | x) sapien sagittis egestas. Duis eget leo euismod nunc viverra imperdiet nec id justo.

Nullam vel erat at velit convallis laoreet

Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Phasellus libero
enim, gravida sed erat sit amet, scelerisque congue diam. Fusce dapibus dui ut augue pulvinar iaculis.

First column Second column Third column Fourth
Foo 13.37 384,394 α
Bar 2.17 1,392 β
Baz 3.14 83,742 δ
Qux 7.59 974 γ

Table 2. A table caption.

Donec quis posuere ligula. Nunc feugiat elit a mi malesuada consequat. Sed imperdiet augue ac nibh
aliquet tristique. Aenean eu tortor vulputate, eleifend lorem in, dictum urna. Proin auctor ante in augue
tincidunt tempor. Proin pellentesque vulputate odio, ac gravida nulla posuere efficitur. Aenean at velit
vel dolor blandit molestie. Mauris laoreet commodo quam, non luctus nibh ullamcorper in. Class aptent
taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.
Nulla varius finibus volutpat. Mauris molestie lorem tincidunt, iaculis libero at, gravida ante. Phasellus at
felis eu neque suscipit suscipit. Integer ullamcorper, dui nec pretium ornare, urna dolor consequat libero,
in feugiat elit lorem euismod lacus. Pellentesque sit amet dolor mollis, auctor urna non, tempus sem.
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Models

We trained a Residual Network, a particular kind of a Convolutional Neural Network (CNN). We use
transfer learning to initialize our model, and we adapt its architecture so we can use it for a regression
task.
Residual Network (ResNet): Type of CNN with a special architecture defined by He et al. (2016).
These kind of models are build by stacking Residual Blocks, blocks of convolutional layers
connected with activation functions, where the input of the block is then added to the output of the
stacked convolutional layers at the end (see example in Figure 2). Residual blocks should help a deep
CNN to avoid the performance problems associated with very deep networks, so if some of the final
layers are not helping the model performance, their weights will be set to 0 and the block will become
an identity mapping.

Figure 2. Example of a residual block from He et al.(2016)
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Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)−x. The orig-
inal mapping is recast intoF(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

Our implementation: We trained a ResNet-18 model, a Residual Network that contains 18
convolutional layers grouped in 8 residual blocks connected by ReLU activation functions. The last
layer of the original model is a linear layer connected to a softmax layer that classifies images into
1,000 classes, so we modify the last linear layer so now it outputs only one number that will represent
our predicted asset ownership, and we measure our loss as our root mean squared error (RMSE). We
initialize our model using the original ResNet-18 pretrained weights. In Figure 3 we show our model’s
architecture:

Figure 3. Residual Network architecture

Satellite images Residual Block: 
2 3x3 

convolutional 
layers with 64 

filters

Input size: 224x224x3

ReLU7x7 Convolutional 
layer, 64 filters

Residual Block: 
2 3x3 

convolutional 
layers with 64 

filters

ReLU
Residual Block: 

2 3x3 
convolutional 

layers with 128 
filters

ReLU
Residual Block: 

2 3x3 
convolutional 

layers with 128 
filters

ReLU

Residual Block: 
2 3x3 

convolutional 
layers with 256 

filters

ReLU

ReLU

Residual Block: 
2 3x3 

convolutional 
layers with 256 

filters

ReLU
Residual Block: 

2 3x3 
convolutional 

layers with 512 
filters

ReLU
Residual Block: 

2 3x3 
convolutional 

layers with 512 
filters

Adaptative average 
pooling layer Output size: 

512x1

Linear layer 
Output size: 

1x1

Predicted asset 
ownership

Benchmark models: We trained linear regression, Lasso regression and Ridge regression models to
compare the performance of our model against them.

Experiments

To tune the hyperparameters of our models, we experimented using data augmentation techniques and
modifying several components of our model.

Data augmentation techniques:
Applying independent vertical and horizontal flips to our images with certain probabilities.
Rotating our images in degrees multiples of 90 (0, 90, 180 and 270) with certain probabilities.
Applying different degrees of Gaussian Blurring to our images.

Hyperparameters tuned:
Number of epochs for training.
Mini-batch training size.
Number of frozen convolutional layers at the bottom of the model (last layers of the model).
Optimizer (Stochastic Gradient Descent or Adam).
Learning rate.
For Stochastic Gradient Descent, we tuned the momentum parameter (momentum makes our gradient a moving
average of our previous gradients).

Results

We computed the RMSE and R2 coefficient in our training, validation and test sets for our CNN
and benchmark models.

Linear regression and Ridge regression have good performance on the training set but a very poor performance on the
validation and test sets.
LASSO regression performs equally bad on the training, validation and test sets.

Our best model is a ResNet-18 model trained with:
200 epochs
Training batch size of 500 images
4 data augmentation transformations applied to images
Adam optimizer
Learning rate = 0.001

The best model has an excellent performance on the training set, and a good performance on the
validation and test sets, suggesting overfitting despite using regularization.

Table 2. Performance metrics for baseline models

Set Training Validation Test
Metric RMSE R2 RMSE R2 RMSE R2

Panel A. Benchmark models
Linear regression 0.008 1.000 2.352 -0.734 2.403 -0.683
Lasso regression 1.733 0.000 1.786 0.000 1.853 -0.001
Ridge regression 0.071 0.998 2.310 -0.673 2.359 -0.622
Panel B. Best experiment
Residual network 0.478 0.948 0.976 0.591 1.309 0.501

Country average asset ownership for pixels in our test set: Our results are off from the ground
truth. Most of the ground truth averages are negative, but we predict on average positive values of asset
ownership.

Figure 4. Average asset ownership per country for test set observations
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Concluding remarks and future work

We trained a ResNet-18 model with Landsat-8 satellite imagery to predict asset ownership in
Africa. We modified the original ResNet-18 architecture so we could train it for a regression task,
and we used transfer learning to take advantage of the pretrained ResNet-18 weights.
The performance of our best model is much better than the performance of our baseline models, but
the model might be overfitting, and the predictions it generates are off from our ground truth data.
We obtained lower R2 validation set values than Yeh et al. (2020).
Future work on this might include expanding our sample size by including more years with DHS
surveys, using more channels of our satellite images, increasing the regularization in our model, adding
dropout probabilities to our nodes and tuning that hyperparameter.
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